Triaxial Relativistic Hartree-Bogoliubov Results with the PC-PK1 Density Functional

 

Theoretical Framework

The relativistic Hartree-Bogoliubov (RHB) theory provides a unified and self-consistent treatment of mean fields and pairing correlations, and it is formalized by the RHB euqation
\[ \begin{pmatrix} {h}_{D} - \lambda & {\Delta} \\ -{\Delta}^{*} & -{h}_{D}^{*} + \lambda \end{pmatrix} \begin{pmatrix} U_{k} \\ V_{k} \end{pmatrix} =E_{k} \begin{pmatrix} U_{k} \\ V_{k} \end{pmatrix}. \]
where ${h_D}$ is the single-nucleon Dirac Hamiltonian, ${\Delta}$ is the pairing field, $U_k$ and $V_k$ are the quasiparticle wavefunctions, and $E_k$ denotes the quasiparticle energies. The Dirac Hamiltonian reads
\[{h}_D=-\mathrm{i}\boldsymbol{\alpha\cdot\nabla}+\beta(m+S)+V,\]
where the scalar field $S$ and the vector field $V$ are coupled with the corresponding scalar and vector densities in a self-consistent way [1,2,3,4]. The matrix elements of pairing field ${\Delta}$ can be written as
\[\Delta_{ab}=\frac{1}{2}\sum_{cd}\langle ab|V^{pp}|cd\rangle\kappa_{cd}\]
where $\kappa=V^*U^T$ is the pairing tensor and $V^{pp}$ is the pairing force. For present results, the PC-PK1 relativistic density functional [5] and a finite-range separable pairing force with the pairing strength $G=728 \mathrm{MeV\cdot fm}^3$ [6] are employed.
The potential energy surface (PES) with respect to the quadrupole deformation parameters $\beta$ and $\gamma$ can be obtained by constraint calculations against mass quadrupole moments [5,6], and the lowest energy state in the PES provides the ground state at the mean field level.
The five-dimensional collective Hamiltonian is employed to extend the mean-field solutions to describe spectroscopic properties and to bring beyond-mean-field dynamical correlation energies to nuclear ground states. The 5DCH is expressed in terms of the two quadrupole deformation parameters $\beta$ and $\gamma$ and three Euler angles $(\phi,\theta,\psi)\equiv\Omega$ that define the orientation of the intrinsic principal axes in the laboratory frame,
\[{H}_{\mathrm{coll}}(\beta,\gamma) = {T}_{\mathrm{vib}}(\beta,\gamma) + {T}_{\mathrm{rot}}(\beta,\gamma,\Omega) + V_{\mathrm{coll}}(\beta,\gamma).\]
It includes the vibrational kinetic energy ${T}_{\mathrm{vib}}(\beta,\gamma)$, rotational kinetic energy ${T}_{\mathrm{rot}}$, and the collective potential $V_{\mathrm{coll}}(\beta,\gamma)$, and their expressions can be seen in Refs. [7,8]. The collective parameters including the moments of inertia $\mathcal{I}_k$, the mass parameters $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$, and the collective potential $V_{\mathrm{coll}}(\beta,\gamma)$ governs the entire dynamics of the 5DCH. As in Refs.[5,6], the collective parameters are determined by the self-consistent RHB calculations with no adjustable parameters. The moments of inertia are computed by the Inglis-Belyaev formula, the mass parameters are calculated in the cranking approximation, and the collective potential is obtained by subtracting the energy of the zero-point motion from the total energy surface. Diagonalization of the 5DCH yields the energy of the collective ground state $0_1^+$ and other low-lying excited states.

References

[1] P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193-263. doi:10.1016/0146-6410(96)00054-3.
[2] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, P. Ring, Phys. Rep. 409 (2005) 101-259. doi:10.1016/j.physrep.2004.10.001.
[3] J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, L. Geng, Prog. Part. Nucl. Phys. 57 (2006) 470-563. doi:10.1016/j.ppnp.2005.06.001.
[4] T. Niks̆ić, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66 (2011) 519-548. doi:10.1016/j.ppnp.2011.01.055.
[5] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82 (2010) 054319. doi.org/10.1103/PhysRevC.82.054319.
[6] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676 (2009) 44. doi.org/10.1016/j.physletb.2009.04.067
[7] T. Niks̆ić, Z. P. Li, D. Vretenar, L. Próochniak, J. Meng, P. Ring, Phys. Rev. C 79 (2009) 034303. doi:10.1103/PhysRevC.79.034303.
[8] Z. P. Li, T. Niks̆ić, D. Vretenar, J. Meng, G. A. Lalazissis, P. Ring, Phys. Rev. C 79 (2009) 054301. doi:10.1103/PhysRevC.79.054301.